Approximation, Taylor Polynomials, and Derivatives

Derivatives for functions f : R” — R will be central to much of Econ 501A, 501B, and 520 — and
also to most of what you’ll do as professional economists. The derivative of a function f is simply a
linearization, or linear (or affine) approximation of f. For real functions, f : R — R, this is pretty
straightforward, and it’s something you already know. So we’ll start there, and then generalize to
functions f: R" — R.

Suppose, then, that we want to approximate the values of f(x) = x2. This is as simple as it gets:
all we have to do is multiply = times x and we get f(x) ezactly, not merely an approximation. But

this example will actually be instructive, as we’ll see.

Here’s a second example: We wish to evaluate, or approximate, the values of f(z) = e* — let’s say
we want to approximate e¥ at x = 1. So we're actually approximating the value of e. This one is

not as obvious as f(r) = 2.

Let’s first use the simple example of f(x) = 22 to develop our ideas and some useful notation.
Suppose we want to approximate the value of f(x) for values of x near T = 1, as in Figure 1,
because we know that f(Z) = 1. Let’s use § to denote f(Z) — i.e., § = f(T). For any = € R, let’s

write
Axr = xz—T, i.e., T=71T+ Ax;

Ay = y—y = fl&) - f(@) = f(T+Ax) - f(T) = F(Azr);

we're defining F' to be F(Ax) := f(T + Ax) — f(T), so that Ay = F(Ax). Notice that Ay is the
ezact change in y that takes place, given by Ay = F(Ax), as in Figure 2, and that the graph of F
is the same as the graph of f but with the coordinates shifted.

We want to find a function, say G(Ax), that gives a best approzimation of Ay = F(Azx) — we
want G to be a best approximation of the ezact function F(Ax). Equivalently, we want a function
g(x) = f(T) + G(Az) that approximates f(x).

What we want is a simple function G that will be a good approximation of F'. So let’s say we want
to find the best linear function G(Az) = aAx to approximate F'(Ax). In other words, we want to
know what the coefficient a should be in order to make the function G(Az) = aAz the best linear
approximation of the nonlinear function F(Ax). We even say that this best linear approximating
function is the linearization of F' near T. (Note that G(0) = 0: at Az = 0, G coincides with F.)

Intuition about the diagram in Figure 3 suggests that the best linear approximation to F', near
T = 1, is the tangent to the graph of F' (which is also the graph of f) at T = 1. If that’s the case,
then the best coefficient a is the slope of the tangent — a should be the derivative f’(Z), the slope
of the tangent to the graph of f at . Moreover, if a is any other number, such as a in Figure 4,

then the approximation, at least near =, will not be as good.



We make this intuition precise by saying that a best approximation G(Az) is one that satisfies the
equation

1
lim ——[F(Az) — G(Axz)] =0, (1)
i.e., as Ax grows small the “error” of the approximation, F'(Az) — G(Azx) grows small a lot faster.

The equation (1) can also be written as

[f(f—i— Ax) — f(f)] —alAx
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o [/ + Az) — f(2)]
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We have to tie up one loose end here: the left-hand side of the equation (3), and also of (1) and (2),
is the limit of a function of Ax. We need to know the limit exists, and that it’s unique, in order to
say that the coefficient a that we’re looking for is this limit. In general, of course, the limit might
or might not exist. So we say that a best linear approximation to the function F' is the function
G(Ax) = aAz, where a is given by (3), if the limit exists. And if it does, we know it’s unique,

because we know that’s a property of the limit of a function.
This motivates the definition of the derivative of a real function:

Definition: Let f : R — R and let T € R. The derivative of f at T, denoted f/(Z), is the
number a € R for which the function G(Az) = aAz is a best linear approximation (BLA) of
F(Az) := f(z + Ax) — f(T) — i.e.,
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if this limit exists, in which case we say that f is differentiable at 7.

So far, we’ve just been reviewing things you already know. Before we move ahead, let’s go back to

our example of f(z) = 22 and see how all this works for that function.
Example 1: Let f: R — R be the function defined by f(z) = x2.

Example 2: Let f: R — R be the function defined by f(x) = e*.

I haven’t typed up the examples yet.



There are two directions in which we need to generalize what we’ve done so far: (i) we need to study
2nd-order (quadratic) and higher-order approximations, and (ii) we need to do the same things for
functions whose domain is R™ as we’ve done for functions with domain R. We’ll do the higher-order

approximations first.

Taylor Polynomials

In the example in the previous section we suggested that in addition to a best linear approximation
we could also define a best quadratic approximation to a function f, or to the function F'(Az) =
f(@+ Azx) — f(T). Here we're actually going to go farther and define a best approximation of order
n, the best n-th degree polynomial approximation of F', for any n € N. As we did in the linear-
approximation case, where n = 1, we start with the fact that F(0) = 0 — i.e., f(T + Az) = f(T)
when Az = 0. We're looking for the best n-th degree polynomial to approximate F', so we’re looking

for the best function

Gn(Az) = a1 Az + az(Ax)? + az(Az)? + -+ - + a, (Az)" (5)

Let’s use the notation G,(qk), F®) and f®) to denote the k-th derivatives of the functions G, F,
and f; and note that F(®)(Az) = f*)(Z + Az) — in particular, F*)(0) = f*) (7).

By analogy with the case n = 1 we’ll guess that for every n the best approximation of order n

satisfies the condition that
G (Az) = F™W(Az) at Az =0, (6)

— d.e., not only does the value of G equal the value of F' at Ax = 0, but the first derivative
(the slope) of the linear approximation Gi(-) has the same value as F’ at Az = 0 (i.e., at T); the
second derivative (the curvature) of Ga(-) has the same value as F”(-) at Az = 0; and so on, with
G (0) = F(™(0) for every n.

Combining (5) and (6) for each n, we have

1 11 1 1

ar = f/(f% az = Ef”(f% az = 3(§)fﬁl(f)7 T, A = gf(k)(j% Tty Gp = ﬁ (n)(f) (7)

1
Exercise: Verify that (7) is correct — i.e., that ay = Hf(k) (7) for each k =1, ..., n in the function

The function G,, in Equation (5), with the coefficients as in (7), is called the homogeneous n-th
degree Taylor polynomial of f, which approximates the increment Ay. The non-homogeneous

form of the Taylor polynomial, which approximates the value of f at x =7 + Az, is

Po(z) = f(7)+ Gn(Ax)
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