
The Bolzano-Weierstrass Property and Compactness

We know that not all sequences converge. In fact, the ones that do converge are just the

“very good” ones. But even “very good” sequences may not converge. Cauchy sequences,

for example, are very good; they’re not really any different than convergent sequences: a

Cauchy sequence actually does converge in “good” spaces (i.e., complete spaces), and fails

to converge only if the point that “should be” its limit is not in the space — i.e., it fails to

converge because the space is not good (is incomplete), not because the sequence is bad.

Now let’s ask about a weaker property of sequences: which sequences have cluster points?

Equivalently, when does a sequence have a subsequence that converges? Consider the alter-

nating real sequence {1,−1, 1,−1, 1, . . .}. The sequence certainly doesn’t converge, but it

has subsequences that do, such as {1, 1, 1, . . .}. We now study an easy-to-check condition

that guarantees that a sequence in R or Rn has a convergent subsequence: every bounded

sequence in Rn has a Cauchy subsequence, a subsequence that therefore converges in Rn.

That’s the content of the Bolzano-Weierstrass Theorem. (We’re assuming throughout this

section that Rn is endowed with a norm; we’ve already seen that which norm we use in Rn

has no effect on convergence — i.e., on which sequences converge.)

The Bolzano-Weierstrass Theorem: Every bounded sequence of real numbers has a

convergent subsequence.

Proof: Let {xn} be a bounded sequence and without loss of generality assume that every

term of the sequence lies in the interval [0, 1]. Divide [0, 1] into two intervals, [0, 1
2
] and

[1
2
, 1]. (Note: this is not a partition of [0, 1].) At least one of the halves contains infinitely

many terms of {xn}; denote that interval by I1, which has length 1
2
, and let {xn′} be the

subsequence of {xn} consisting of every term that lies in I1.

Now divide I1 into two halves, each of length 1
4

= (1
2
)2, at least one of which contains

infinitely many terms of the (sub)sequence {xn′}, and denote that half by I2. Let {xn′′}
be the subsequence of {xn′} consisting of all of the terms that lie in I2. Continuing in this

way, we construct a sequence of nested intervals I1 ⊇ I2 ⊇ . . . , where the length of In is

(1
2
)n, and each interval contains an infinite number of terms of the original sequence {xn}.

Finally, we construct a subsequence {zn} of {xn} made up of one term from each interval

In. This subsequence is clearly Cauchy: ∀N: m,n > N ⇒ |zm − zn| < (1
2
)N . Therefore the

subsequence {zn} converges, according to the Cauchy-sequence version of the Completeness

Axiom. ‖



The Bolzano-Weierstrass Theorem is true in Rn as well:

The Bolzano-Weierstrass Theorem: Every bounded sequence in Rn has a convergent

subsequence.

Proof: Let {xm} be a bounded sequence in Rn. (We use superscripts to denote the terms

of the sequence, because we’re going to use subscripts to denote the components of points in

Rn.) The sequence {xm
1 } of first components of the terms of {xm} is a bounded real sequence,

which has a convergent subsequence {xmk
1 }, according to the B-W Theorem in R. Let {xmk}

be the corresponding subsequence of {xm}. Then the sequence {xmk
2 } of second components

of {xmk} is a bounded sequence of real numbers, so it too has a convergent subsequence,

and we again have a corresponding subsequence of {xmk} (and therefore of {xm}), in which

the sequences of first and second components both converge. Continuing for n iterations, we

end up with a subsequence {zm} of {xm} in which the sequences of first, second, . . . , nth

components all converge, and therefore the subsequence {zm} itself converges in Rn. ‖

It’s elementary to show that the following form of the B-W Theorem is equivalent to the one

we’ve just proved:

The Bolzano-Weierstrass Theorem: Every sequence in a closed and bounded set S in

Rn has a convergent subsequence (which converges to a point in S).

Proof: Every sequence in a closed and bounded subset is bounded, so it has a convergent

subsequence, which converges to a point in the set, because the set is closed. ‖

Conversely, every bounded sequence is in a closed and bounded set, so it has a convergent

subsequence.

Subsets of Rn that are both closed and bounded are so important that we give them their own

name: a closed and bounded subset of Rn is said to be compact. And in any metric space,

the sets in which all bounded sequences have convergent subsequences are so important that

we give that property of sets its own name as well:

Definition: A set S in a metric space has the Bolzano-Weierstrass Property if every

sequence in S has a convergent subsequence — i.e., has a subsequence that converges to a

point in S.

The B-W Theorem states that closed and bounded (i.e., compact) sets in Rn have the B-W

Property. We can also prove the converse of the B-W Theorem, that any set in Rn with the

B-W Property is closed and bounded (compact). See Theorem 29.6 of Simon & Blume.
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In other words, the compact sets in Rn are characterized by the Bolzano-Weierstrass Property.

So how do things work in general metric spaces? Are compact sets characterized by B-W?

What is the definition of a compact set in a metric space?

Let’s say, tentatively, that it’s still defined as a closed and bounded set.

Are closed and bounded sets characterized by the B-W Property in metric spaces?

Example: Let (X, d) be an infinite set with the discrete metric: x 6= x′ ⇒ d(x, x′) = 1. (For

example, let X = N = {1, 2, . . .}.) Of course the space is closed. And the space is bounded:

let x∗ be any element of X; every element x ∈ X except x∗ is at distance d(x, x∗) = 1 from

x∗. Let {xn} be any sequence of distinct points in X; the sequence is bounded. Moreover, it

does not have a convergent subsequence (it consists of distinct points, all of them equidistant

from one another). So closed and bounded sets in a metric space don’t necessarily have the

B-W Property — in this respect, closed and bounded sets in some metric spaces will behave

very differently than compact sets in Rn. Exercise: Is the sequence described in the example

Cauchy? Describe all Cauchy sequences and all convergent sequences in this metric space.

The essential feature of compact sets in Rn is that they have the B-W Property. Lots of

other properties of compact sets follow from that — for example, the Weierstrass Theorem,

that a continuous real-valued function on a compact set attains a maximum and a minimum.

But here we’ve seen that closed and bounded sets in an arbitrary metric space may not have

the B-W property; therefore we don’t want to call them compact. Instead, we simply define

compact sets to be the ones that have the B-W Property.

Definition: A metric space is compact if it has the B-W Property.

Let’s review: In Rn we called the closed and bounded sets compact, and they were charac-

terized by the B-W Property. In metric spaces we have definitions of closed sets and bounded

sets, but closed and bounded sets don’t necessarily have the B-W Property. So we defined

compact sets to be the ones that have the B-W Property — so in Rn the compact sets are

still the closed and bounded ones, and now in all metric spaces the compact sets (as in Rn)

are precisely the ones with the B-W Property.

The following two theorems are easy to prove:

Theorem: Let S be a compact set in a metric space. Then

(a) S is closed; (b) S is bounded; (c) S is complete.

Theorem: A closed subset of a compact metric space is compact.
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Now we can easily prove the Weierstrass Theorem; in fact, we can prove the following gen-

eralized form of the Weierstrass Theorem, which says that continuous functions preserve

compactness.

Theorem: Let f : X → Y . If X is compact and f is continuous, then f(X) is compact.

Proof: We must show that f(X) has the B-W Property. Let {yn} be a sequence in f(X);

we must show that {yn} has a convergent subsequence. For each n ∈ N, let xn ∈ X be such

that f(xn) = yn (which we can do because yn ∈ f(X)). Since X is compact, {xn} has a

subsequence {xnk
} that converges to some x ∈ X. Since f is continuous, {f(xnk

)} converges

to f(x) ∈ Y . Since x ∈ X, we have f(x) ∈ f(X). ‖

Corollary (The Weierstrass Theorem): A continuous real-valued function on a compact

subset S of a metric space attains a maximum and a minimum on S.

Proof: f(S) is a compact subset of R, i.e., a closed and bounded subset of R. Since f(S)

is a bounded subset of R, it has both a least upper bound M and a greatest lower bound m;

and since f(S) is closed, it contains m and M . Therefore m = min f(S) and M = max f(S).

‖

Exercise: In the example on the preceding page, (X, d) is an infinite discrete metric space.

Which subsets of X are compact? Which subsets are closed and bounded? Which subsets

are open? Let X = Z, the set of all integers, and let f : Z → R be the real-valued function

f(x) = x. Does f attain a maximum or a minimum on Z? Is f continuous? On which

subsets of Z does f attain a maximum or a minimum?

Note: You may also see a definition that says a compact set is one that has the Heine-Borel

Property — every open cover has a finite subcover. Just as “closed and bounded” didn’t get

us what we wanted when we went from Rn to a metric space, the B-W Property doesn’t get

us what we want when we go to a topological space (a space where open and closed sets are

the defining concepts but the space may not have a metric structure).
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