
Convexity

We’ll assume throughout, without always saying so, that we’re in the finite-dimensional

Euclidean vector space Rn, although sometimes, for statements that hold in any vector

space, we’ll say explicitly that we’re in a vector space V . Theorems and remarks that are

accompanied by the symbol ♣ are given without proof but are easy to prove. They provide

good exercises in beginning to work with convexity and related concepts.

Definition: A set S in a vector space V is convex if for any two points x and y in S, and

any λ in the unit interval [0, 1], the point (1− λ)x+ λy is in S.

Theorem:♣ The intersection of any collection of convex sets is convex — i.e., if for each α

in some set A the set Sα is convex, then the set
⋂
α∈A Sα is convex.

Theorem:♣ If X1, X2, . . . , Xm are convex sets, then
∑m

1 Xi is convex.

Definition: Let p 6= 0 ∈ Rn and let b be a real number. The set of solutions of the linear

equation p1x1 + · · · + pnxn = b is a hyperplane in Rn, and is denoted H(p, b) — i.e.,

H(p, b) = {x ∈ Rn |p · x = b}.

Remark:♣ For any non-zero real number λ, we have H(λp, λb) = H(p, b). Therefore any

hyperplane can be represented by a p whose Euclidean norm ‖p‖ satisfies ‖p‖ = 1: Given a

hyperplane H(p, b) with ‖p‖ 6= 1, let λ = 1/‖p‖ and let p′ = λp and b′ = λb; then ‖p′‖ = 1

and p′ · x = b′ if and only if p · x = b, so that H(p′, b′) = H(p, b).

Definition: A closed half-space is a set of the form {x ∈ Rn | p · x 5 b} for some

p 6= 0 ∈ Rn and b ∈ R. An open half-space is a set of the form {x ∈ Rn | p · x < b} for

some p 6= 0 ∈ Rn and b ∈ R.

Informally, a closed (resp. open) half-space is the set of all points on one side of a hyperplane,

including (resp. not including) the hyperplane itself. Thus, a hyperplane H in Rn divides Rn

into two half-spaces which have in common either no points (if at least one of the half-spaces

is open) or all the points in H (if both half-spaces are closed).

Remark:♣ Every half-space (whether open or closed) is a convex set.

Definition: A real-valued function f : X → R on a convex set X is concave if

∀x,y ∈ X,λ ∈ (0, 1) : f
(
(1− λ)x + λy

)
= (1− λ)f(x) + λf(y},

and f is convex if

∀x,y ∈ X,λ ∈ (0, 1) : f
(
(1− λ)x + λy

)
5 (1− λ)f(x) + λf(y}.



Definition: A real-valued function f : X → R on a convex set X is quasiconcave if

∀x,y ∈ X,λ ∈ (0, 1) : f
(
(1− λ)x + λy

)
= min{f(x), f(y)},

and f is quasiconvex if and only if

∀x,y ∈ X,λ ∈ (0, 1) : f
(
(1− λ)x + λy

)
5 max{f(x), f(y)}.

In other words, f is quasiconcave if and only if the value of f at any convex combination of

two points in X is at least as large as its value at one of the two points; and f is quasiconvex

if the value of f at any convex combination of two points is at least as small as it is at one

of the two points.

Definition: Let f : X → R be a real-valued function on a set X ⊆ Rn, and let a ∈ R. The

f-upper-contour set and the f-lower-contour set for a are the sets

Uf (a) = {x ∈ X | f(x) = a} and Lf (a) = {x ∈ X | f(x) 5 a}.

Let x ∈ X; in a slight abuse of notation, we say the f-upper-contour set and the f-lower-

contour set of x are the sets Uf (f(x)) and Lf (f(x)) — i.e.,

Uf (x) = {z ∈ X | f(z) = f(x)} and Lf (x) = {z ∈ X | f(z) 5 f(x)}.

The strict upper- and lower-contour sets are defined by replacing the weak inequalities

with strict inequalities, and are denoted by U◦f (·) and L◦f (·). When we need to make the

distinction, the sets defined by weak inequalities are called the weak upper- and lower-

contour sets.

Theorem:♣ A function f : X → R is quasiconcave if and only if all of its upper-contour sets

are convex — i.e., if and only if ∀x ∈ X : Uf (x) is convex. And f is quasiconvex if and only

if all of its lower-contour sets are convex — ∀x ∈ X : Lf (x) is convex.

Definition: A function f : X → R is strictly concave/convex/quasiconcave/quasiconvex if

the inequality in the relevant definition above is strict whenever x and y are distinct points.

Remark:♣ A function f is concave if and only if −f is convex. The same is true for each

variant of concave and convex functions. We can therefore work only with concave functions

(and variants), since every definition and result can be directly translated into a statement

that replaces concave with convex and f with −f .

Remark:♣ If a function f is concave then it is quasiconcave; if f is strictly concave then it

is strictly quasiconcave.
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Exercise: Let f : R2
++ → R be the function defined by f(x) = x1x2. Verify that f is neither

concave nor convex, but is strictly quasiconcave.

Remark: If f : X → R is a concave function and f(x) < f(x), then f(x(λ)) > f(x) for all

λ ∈ (0, 1), where x(λ) = (1− λ)x+ λx.

Proof:

f(x(λ) = (1− λ)f(x) + λf(x) > (1− λ)f(x) + λf(x) = f(x). �

Suppose that f(x) < f(x), as in the preceding remark, and that b is a value between f(x)

and f(x), as depicted in Figure 1. The Intermediate Value Theorem for continuous real

functions tells us that if X ⊆ R and if f is continuous, there is a value of x between x and

x for which f(x) = b. The following theorem is a kind of intermediate value theorem for

concave functions: it tells us that if f is concave (but not necessarily continuous, and more

important, the domain X need not be only one-dimensional), then there is a value of λ, say

λ∗, such that for all larger values of λ, we have f(x(λ)) > b. The intuition for the theorem

is clear in Figure 2 if we remember that the graph of a concave function must everywhere be

on or above the line segment joining the points (x, f(x)) and (x, f(x)).

Theorem: If f : X → R is a concave function and f(x) < b < f(x), then f(x(λ)) > b for

every λ > λ∗, where

λ∗ =
b− f(x)

f(x)− f(x)
and x(λ) = (1− λ)x+ λx.

Proof: We first show that f(x(λ∗)) = b, as follows:

f(x(λ∗)) = (1− λ)f(x) + λf(x), by concavity of f

=
f(x)− b

f(x)− f(x)
f(x) +

b− f(x)

f(x)− f(x)
f(x)

=
1

f(x)− f(x)

[
f(x)f(x)− bf(x) + bf(x)− f(x)f(x)

]
=

f(x)− f(x)

f(x)− f(x)
b = b.

Now there are three cases to consider: (i) If f(x(λ∗)) < f(x), then the conclusion, f(x(λ)) > b

for every λ > λ∗, follows from the preceding remark, where the roles of x and x in the remark

are played here by x(λ∗) and x, respectively. (ii) If f(x(λ∗)) = f(x), then the conclusion

is obvious. (iii) if f(x(λ∗)) > f(x), then the conclusion follows from the remark, where the

roles of x and x in the remark are played here by x and x(λ∗), respectively. �
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Figure 1

Figure 2
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Preview: Convex Optimization

Definition: The hyperplane H(p, b) separates sets X and Y in Rn if for all x ∈ X and

y ∈ Y , we have p · x 5 b 5 p · y.

The following theorem is a classical theorem of convex analysis. The theorem seems obvi-

ously true from an intuitive, geometric perspective. The theorem and its proof confirm this

intuition. The proof will be given later in the course.

Minkowski’s Theorem: If X and Y are nonempty disjoint convex sets in Rn, then there

is a hyperplane that separates them — i.e., there exist a p 6= 0 ∈ Rn and a b ∈ R such that

for all x ∈ X and y ∈ Y , we have p · x 5 b 5 p · y.

Theorem: Let f : X → R be a continuous quasiconcave function on a convex domain

X ⊆ Rn; and let S be a convex subset of X. Let x be an element of S at which f does not

attain a local maximum on X. Then x maximizes f on S if and only if there is a p 6= 0 ∈ Rn

such that

(a) x maximizes f(x) s.t. p · x 5 p · x and (b) x maximizes p · x s.t. x ∈ S.

The Beginning of a Proof: It’s easy to see that (a) and (b) together imply that x

maximizes f on S: if x ∈ S, then p · x 5 p · x according to (b); and therefore f(x) 5 f(x)

according to (a).

To prove the converse, we assume that x maximizes f on S, and we will show that there

is a p 6= 0 ∈ Rn that satisfies (a) and (b). Let U = {x ∈ X | f(x) > f(x)}, the strict

f -upper-contour set of x. U is nonempty and convex, and is disjoint from S; and since S is

also nonempty and convex, the Minkowski Theorem guarantees the existence of a p 6= 0 ∈ Rn

and a real number b > 0 such that the hyperplane H(p, b) separates the two sets — i.e.,

(∗) ∀x ∈ S : p · x 5 b and (∗∗) ∀x ∈ U : b 5 p · x.

The remainder of the proof consists of first showing that (∗) and (∗∗) together imply that

b = p · x, and then using this fact to establish the conclusions (a) and (b) of the theorem.

This is the place where we use the continuity of f — note that we so far haven’t made use

of continuity. We defer this part of the proof to later in the course. �
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Here are several observations about this convex optimization theorem:

(1) If f is strictly quasiconcave, or if S is (informally speaking, for the time being) a “strictly

convex” set, then a maximizer x of f on S will be unique. If both of these “strict” conditions

are satisfied, then x will be (a) a unique maximizer of f subject to p · x 5 p · x and (b) a

unique maximizer of p · x subject to x ∈ S.

(2) The theorem is an existence theorem: one of its conclusion says that there exists a vector

p that satisfies (a) and (b). (Minkowski’s Theorem is also an existence theorem.) The p

that exists is often interpreted as a list of prices of various goods, and the theorem is then

interpreted as a theorem about “separation of decisions” or “decentralizing decision-making.”

For example, suppose S is a set of feasible output combinations (a production-possibilities

set); f is a utility or objective function; and we wish to find an x that maximizes f over

S. The theorem says that there is some list p of prices such that a person who knows the

function f and who knows the prices and the budget amount b, but who knows nothing about

the set S, could choose x so as to maximize f subject to the restriction that the value of x (at

prices p) not exceed the budget b; and another person, knowing only the set S and the prices

p, but knowing nothing about f , could choose x to maximize the value of x among all the

x ∈ S; and the (unknown) x would be a solution for each of the two decision-makers. And

it would be the unique solution of each person’s problem if f is strictly quasiconcave or S is

“strictly convex.” Alternatively, one person who wishes to choose a best x in S can separate

his decision-making into two distinct decision problems, a consumption decision that doesn’t

involve S and a production decision that doesn’t involve f .

Of course, we may not know the separating price-list p any more than we know the maxi-

mizing plan x that we’re trying to find. A potential way to find the correct p and x might

be to iteratively try various price-lists p. As long as the two decision-makers choose different

plans, we adjust the price-list until (we hope) the price-list converges to a p at which they

choose the same plan. The theorem guarantees that if there is a maximizing x then there

will be such a separating p, and that when both decision-makers choose the same plan we

will have the “correct” separating p and therefore the plan they both choose will be the

maximizing plan. There’s an obvious similarity here to a market process, where the prices

adjust to excess demand or supply until reaching an “equilibrium” at which demand equals

supply. This similarity is not accidental; we’ll see this again in Econ 501B.

(3) The theorem makes no mention of differentiability of f or of differentiability of any

functions that might define the set S. So the theorem ensures the existence of a separating

p in a broad range of situations where differentiability is not present.
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(4) The constraint set, or feasible set, S is often defined by a set of inequality constraints,

such as
gi(x) 5 ci (i = 1, . . . ,m),

where each function gi(·) is quasiconvex and where all of the m inequalities have to be

satisfied. Then S is the intersection of m convex sets

Si = {x | gi(x) 5 ci}, (i = 1, . . . ,m),

as in Figure 3, and therefore S itself is convex, as required in the theorem. In particular, the

constraints could be linear, as in Figure 4.

Figure 3 Figure 4
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