
Differentiable Quasiconcave Functions

The original Kuhn-Tucker Theorem was stated and proved (by Harold Kuhn and Albert Tucker)

for concave objective functions and convex constraint functions. But concavity and convexity are

sometimes stronger properties than we want to assume for the functions we’re working with. The

classical example is utility functions. For example, we’ve already seen that the Cobb-Douglas utility

function u(x) = x1x2 on R2
+ is not concave. But it’s nevertheless a “good” utility function: it has

decreasing MRS everywhere — its indifference curves are all convex, i.e., its upper-contour sets

are all convex sets. So it’s a quasiconcave function. We don’t want to assume utility functions are

concave, because the only properties of utility functions that matter are the properties of their level

curves, not the actual numbers a function assigns to the vectors in its domain. But we’re generally

willing to assume utility functions are quasiconcave.

In order to obtain derivative conditions on a function f : Rn → R that are necessary or sufficient for

f to be quasiconcave, let’s look at Figure 1, where we have one of the level curves of a quasiconcave

function f . Notice two things about Figure 1:

(i) For every nonzero ∆x = x − x that satisfies ∆f(∆x) > 0 — i.e., f(x) > f(x) — we have

∇f(x)∆x > 0. Equivalently, ∇f(x)∆x 5 0⇒ ∆f(∆x) 5 0. This is true globally, for every nonzero

∆x, not just locally, for “small” ∆x. Moreover, this would be true at any other x on the level curve

— and therefore for any x in Rn.

(ii) The diagram looks just like it would if x were a maximum of f subject to the constraint

f1x1 + f2x2 = f1x1 + f2x2, where fi =
∂f

∂xi
(x) — i.e., to f1∆x1 + f2∆x2 = 0,

Property (ii) suggests that we may be able to translate the necessary and/or sufficient conditions

for a maximum point subject to constraint into conditions for f to be quasiconcave. This is almost

true: indeed we can translate the constrained maximization conditions into conditions for Property

(i) to hold, but Property (i) isn’t exactly the same as quasiconcavity. (Functions with Property (i)

are called pseudoconcave, but we’re generally interested in the slightly weaker property of quasi-

concavity.) However, if in addition to (i), f also has no critical points (for example, if f is strictly

increasing in each of its components, like the utility function u above), then we do have the following

characterization of differentiable quasiconcave functions.

Theorem: Let f : Rn → R be a differentiable function that satisfies ∇f(x) 6= 0 for all x ∈ Rn.

Then f is quasiconcave if and only if

∀x,x ∈ Rn : ∇f(x)∆x 5 0⇒ ∆f(∆x) 5 0.

This gives us the following theorem, where we exploit the fact that in the constrained maximization

theorem, with a single constraint G(x) = b, we have ∇f = λ∇G at x for some nonzero λ. We

simply replace ∇G(x) — the top and left borders in the determinantal conditions for a constrained

maximum point — with ∇f(x). (We dispense with the λ by multiplying both the top and left

borders by λ, which doesn’t change the sign of the determinant or of any of its bordered minors.)



Theorem: Let f : Rn → R be a C2-function and for each x ∈ Rn define the bordered Hessian B(x)

as follows:

B(x) =


0 f1 · · · fn

f1 f11 · · · f1n

· · · · · · · · · · · ·
fn fn1 · · · fnn

 ,

where fi denotes the derivative
∂f

∂xi
(x) and fij denotes the derivative

∂2f

∂xi ∂xj
(x). If ∇f(x) 6= 0 for

all x ∈ Rn, then

(i) a sufficient condition for f to be quasiconcave is ∀x ∈ Rn : (−1)r
∣∣Br(x)

∣∣ > 0, r = 2, . . . , n,

for all leading principal minors
∣∣Br(x)

∣∣;
(ii) a sufficient condition for f to be quasiconvex is ∀x ∈ Rn :

∣∣Br(x)
∣∣ < 0, r = 2, . . . , n,

for all leading principal minors
∣∣Br(x)

∣∣;
(iii) a necessary condition for f to be quasiconcave is ∀x ∈ Rn : (−1)r

∣∣Br(x)
∣∣ = 0, r = 2, . . . , n,

for all border-preserving principal minors
∣∣Br(x)

∣∣;
(iv) a necessary condition for f to be quasiconvex is ∀x ∈ Rn :

∣∣Br(x)
∣∣ 5 0, r = 2, . . . , n,

for all border-preserving principal minors
∣∣Br(x)

∣∣.
You should compare these conditions to the conditions for definiteness of quadratic forms subject

to homogeneous linear constraints, for just one constraint, as described in the paragraph preceding

the theorem.
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