
Nonlinear Programming

and the

Kuhn-Tucker Conditions

The Kuhn-Tucker (KT) conditions are first-order conditions for constrained optimization prob-

lems, a generalization of the first-order conditions we’re already familiar with. These more general

conditions provide a unified treatment of constrained optimization, in which

• we allow for inequality constraints;

• there may be any number of constraints;

• constraints may be binding or not binding at the solution;

• non-negativity constraints can be included;

• boundary solutions (some xi’s = 0) are permitted;

• non-negativity and structural constraints are treated in the same way;

• dual variables (also called Lagrange multipliers) are shadow values (i.e., marginal values).

A special case covered by the Kuhn-Tucker conditions is linear programming. The conditions are

also called the Karush-Kuhn-Tucker conditions: many years after Kuhn and Tucker developed

the conditions in 1951, it was discovered that William Karush had presented essentially the same

conditions in his 1939 master’s degree thesis.

The Kuhn-Tucker Conditions

Let f : Rn → R and G : Rn → Rm be continuously differentiable functions, and let b ∈ Rm.

We want to characterize those vectors x̂ ∈ Rn that satisfy

(∗) x̂ is a solution of the problem

(P) Maximize f(x) subject to x = 0 and G(x) 5 b,

i.e., subject to x1, x2, . . . , xn = 0 and to Gi(x) 5 bi for i = 1, . . . ,m.

The Kuhn-Tucker conditions are the first-order conditions that characterize the vectors x̂ that

satisfy (∗) (when appropriate second-order conditions are satisfied, which we’ll see momentarily):

∃λ1, . . . , λm ∈ R+ such that

(KT1) For j = 1, . . . , n :
∂f

∂xj
5
∑m

i=1 λi
∂Gi

∂xj
, with equality if x̂j > 0 ;

(KT2) For i = 1, . . . ,m : Gi(x̂) 5 bi, with equality if λi > 0 ,

where the partial derivatives are evaluated at x̂. The scalars λi are called Lagrange multipliers.

1



The Kuhn-Tucker conditions given above are in partial derivative form. An equivalent statement

of the conditions is in gradient form:

∃λ ∈ Rm
+ such that

(KT1) ∇f 5
∑m

i=1 λi∇Gi and x̂ · (∇f −
∑m

i=1 λi∇Gi) = 0 ;

(KT2) G(x̂) 5 b and λ · (b−G(x̂)) = 0 ,

where gradients are evaluated at x̂.

The Kuhn-Tucker Theorems

The first theorem below says that the Kuhn-Tucker conditions are sufficient to guarantee that x̂

satisfies (∗), and the second theorem says that the Kuhn-Tucker conditions are necessary for x̂ to

satisfy (∗). Taken together, the two theorems are called the Kuhn-Tucker Theorem.

Theorem 1: Assume that each Gi is quasiconvex; that either (a) f is concave or (b) f is

quasiconcave and ∇f 6= 0 at x̂; and that f and each Gi are differentiable. If x̂ satisfies the Kuhn-

Tucker conditions then x̂ satisfies (∗).
[Briefly, (KT) ⇒ (∗).]

Theorem 2: Assume that f is quasiconcave; that each Gi is quasiconvex and the constraint set

{x ∈ Rn | G(x̂) 5 b} satisfies one of the constraint qualifications (to be described shortly); and

that f and each Gi are differentiable. If x̂ satisfies (∗) then x̂ satisfies the Kuhn-Tucker conditions.

[Briefly, (∗) ⇒ (KT).]

The next theorem tells us how changes in the values of the bi’s affect the value of the objective

function f . For the nonlinear programming problem defined by f , G, and b, define the value

function v : Rm → R as follows:

∀b ∈ Rm : v(b) is the value of f(x̂) where x̂ satisfies (∗).

Theorem 3: If (∗) and (KT) are both satisfied at x̂, then λi =
∂v

∂bi
for each i.

In other words, λi is the “shadow value” of the ith constraint, the marginal value to the objective

function of relaxing or tightening the constraint by one unit.

Note that second-order (curvature/convexity/concavity) conditions are required in order for the

Kuhn-Tucker (first-order) conditions to be either necessary or sufficient for x̂ to be a solution to

the nonlinear programming problem.

2



Examples

Example 1: Suppose that xj > 0 for each j = 1, . . . , n and that (KT) is satisfied at x̂. Then

∇f =
m∑
i=1

λi∇Gi for some λ1, . . . , λm = 0,

where the gradients are all evaluated at x̂. In other words, ∇f lies in the cone formed by the

gradients of the constraints (it’s a non-negative linear combination of them), as in Figure 1.

Example 2: In Example 1 each of the constraints is binding — i.e., Gi(x̂) = bi, (x̂ lies on each

of the constraints) — and each λi is strictly positive. The KT conditions allow, however, that if

Gi(x̂) = bi, then λi may be zero, as in Figure 2. This still leaves ∇f in the cone formed by the

Gi-gradients ∇Gi.

Example 3: Now suppose that in Figure 2 ∇f and/or ∇G2 in Figure 2 is perturbed slightly,

so that we have Figure 3. Now ∇f no longer lies in the cone of the ∇Gis — ∇f is no longer

a non-negative linear combination of the Gi-gradients. Notice that there is also a “lens”-shaped

region between the f and Gi level curves through x̂, and that this lens contains points x that

simultaneously satisfy both f(x) > f(x̂) and Gi(x) 5 bi for each i — points that are feasible and

give larger values of f than x̂ does. In other words, x̂ no longer satisfies (∗), just as it no longer

satisfies (KT).

This idea of the “lens” between level curves — in fact, we do call it a lens — is a useful idea.

When f is quasiconcave and each Gi is quasiconvex, the condition that ∇f lies in the cone of the

∇Gis is precisely that any lens between the f -contour and a Gi-contour must lie “outside” of some

other Gi-contour — i.e., that the f -contour is tangent (in a generalized sense) to the feasible set

at x̂, and therefore that f is maximized at x̂.

At the solutions in each of our examples so far, the variables xj have all been positive and the

constraints have all been binding. Examples 4 and 5 have a non-binding constraint, and then a

solution at which a variable is zero.

Example 4: If Gi(x̂) < bi, then (KT) requires that λi = 0 — i.e., that ∇f lies in the cone

formed by the other constraints’ gradients. This is because, as in Figure 4, a non-binding constraint

contributes nothing to defining the feasible set at x̂, and therefore any lens between the f -contour

and any other Gk-contour need only lie outside the set formed by just those other contours.

3



Example 5: Suppose that x̂2 = 0, as in Figure 5. Then (KT) allows that ∂f
∂x2

<
∑m

i=1 λi
∂Gi

∂x2
.

Now we don’t have ∇f in the cone of the Gi-gradients, so there is a lens between the f -contour and

one of the Gi-contours that lies inside all the Gi-contours. But the feasible set is truncated by the

inequality constraint x2 = 0, so the lens is not actually in the feasible set after all. Analytically,

this is captured by the fact that it’s x̂2 that is zero and it’s the x2-component in which equality

fails in the inequality ∇f 5
∑
λi∇Gi. Important: Since x̂1 > 0, (KT) still requires that

∂f
∂x1

=
∑m

i=1 λi
∂Gi

∂x1
at x̂. So we have to find λi s for which some non-negative linear combination of

the binding constraints’ gradients lies directly above ∇f , as in Figure 5. It must be above and not

below, because of the strict inequality for the x2-components of the partial derivatives.

Example 6: Figure 6 shows how the (KT) conditions, which are first-order conditions, can fail

to be a sufficient condition for (∗) if the second-order curvature conditions don’t hold. Here the

constraint is not quasiconvex, (KT) is satisfied, but x̂ is not a solution of the problem (P). You

can reinterpret the figure as f not being quasiconcave by pointing the gradients ∇f and ∇G in

the opposite direction, to the northwest, and reversing the f and G labels on the level curves.

Example 7: Figure 7 shows how the (KT) conditions can fail to be a necessary condition for (∗),
even if the second-order curvature conditions do hold. Here the two Gi-gradients are co-linear and

point in opposite directions, so the two constraints are tangent to one another, and the feasible set

consists only of the point x̂, which is therefore trivially a solution of our maximization problem.

But ∇f is not in the (degenerate) cone of the Gi-gradients — it is not a linear combination of ∇G1

and ∇G2: (KT) is not satisfied.

Constraint Qualifications

In order to ensure that the KT conditions are necessary at a solution, we need to rule out situations

like we’ve just seen in Example 7, where the constraint set was a singleton and the gradients

of the constraint functions were linearly dependent. Various constraint qualifications have been

introduced to accomplish this. The various constraint qualifications are generally independent of

one another — i.e., any one of them typically doesn’t imply any of the others — and any one of

them is enough to ensure that our Theorem 2 is true.

Here are the two constraint qualifications that are by far the most commonly used. They’re both

obviously violated in Example 7.

Nondegenerate Constraint Qualification (NDCQ): The gradients of the binding constraints

(including the binding non-negativity constraints) at the vector x ∈ Rn are linearly independent.

4



If NDCQ holds at a solution x̂, and the second-order conditions of Theorem 2 hold, then Theorem

2 says that the KT conditions hold at x̂. NDCQ therefore requires us to know something about

the particular vector x̂; but of course, when using it for Theorem 2 we know that x̂ is a solution

of the problem (P).

For the other commonly used constraint qualification we need only to establish that there is some

vector that satisfies all the constraints as strict inequalities:

Slater’s Condition: The constraint set has a nonempty interior — i.e., there is a point x that

satisfies all the constraints as strict inequalities:

∀j = 1, . . . , n : xj > 0 and ∀i = 1, . . . ,m : Gi(x) < bi.

The Lagrangian

Nearly every graduate microeconomics textbook and mathematics-for-economists textbook in-

troduces the Lagrangian function, or simply the Lagrangian, for constrained optimization

problems. For our problem (P) the Lagrangian is the function

L(x, λ) := f(x) +
m∑
i=1

λi
[
bi −Gi(x)

]
.

The Lagrangian is a way to convert the constrained problem to an unconstrained problem in which

the first-order conditions are the Kuhn-Tucker conditions for the original, constrained problem.

In order for the Lagrangian first-order conditions to coincide with (KT) we must be at a point

(x̂, λ̂) that maximizes the function L(x, λ̂) and minimizes the function L(x̂, λ) and satisfies the

inequality constraints xj = 0, j = 1, . . . , n — in which case (assuming second-order conditions are

satisfied) (x̂, λ̂) will satisfy the Lagrangian’s first-order conditions

for j = 1, . . . , n :
∂L
∂xj

5 0, with equality if x̂j > 0 ;

for i = 1, . . . ,m :
∂L
∂λi

= 0, with equality if λ̂i > 0 ;

where the partial derivatives are evaluated at (x̂, λ̂). Since

∂L
∂xj

=
∂f

∂xj
−

m∑
i=1

λi
∂Gi

∂xj
and

∂L
∂λi

= bi −Gi(x),

it’s easy to see that these first-order conditions coincide with the Kuhn-Tucker conditions.

While the Lagrangian has other uses, its use for constrained optimization problems seems mostly

to be as a way to obtain the Kuhn-Tucker conditions if you can’t remember them, or as a way (I

think an unsatisfactory way) to teach the Kuhn-Tucker conditions.

5



The other uses of the Lagrangian generally come from the fact that a solution of the Lagrangian

maximization/minimization problem is what’s called a saddle-point of the function L. The

problem of identifying such saddle-points — points that maximize with respect to some variables

and minimize with respect to the other variables – is called a saddle-point problem. To see why

such a point is called a saddle-point, consider the graph, in R3, of the function f(x, y) = x2 − y2

defined on R2: at the point (0, 0) the graph looks just like a saddle, as in Figure 8. The saddle-point

terminology isn’t very descriptive for the Lagrangian, however, because the Lagrangian is linear

in the λ variables. Nonetheless, a solution for the Lagrangian function is a saddle-point, because

it does maximize with respect to the xj’s and minimize with respect to the λi’s.

The Lagrangian is also a way to remember the Kuhn-Tucker Theorem 3, above. Since ∂L
∂bi

= λi, this

suggests that the partial derivatives of the value function are the Lagrange multipliers: ∂v
∂bi

= λi.

We’ll treat this more formally when we study the Envelope Theorem.

Because the Lagrange multipliers λi are the values of the derivatives ∂v
∂bi

, they’re the marginal

values, or shadow values, of the constraints. The multiplier λi tells us the value, in objective-

function units, of “relaxing” the i-th constraint by one unit. Here it’s helpful to think of the xj

variables as the levels at which each of n activities is operated; to think of f(x) as the dollar value

— say, the profit — of operating at the levels described by the vector x; and to think of each

function Gi(x) as the amount of some resource Ri required to operate at the vector x; and the

number bi as the amount of resource Ri that’s available to the decision-maker. Then ∂v
∂bi

is the

marginal increase in profit f(x) that will result from having one additional unit of resource Ri —

the marginal value of the resource. If constraint i is non-binding, then the marginal value of an

increase or decrease in bi is zero — i.e., λi = 0. If constraint i is binding, λi tells us how much

f(x) will be increased or decreased by a unit increase or decrease in availability of resource Ri.

This provides a useful interpretation of the Lagrangian: each λi is a dollar reward the decision-

maker will receive for every unit of “slack” in constraint i — the amount bi − Gi(x) — so that

the sum
∑m

i=1 λi
[
bi −Gi(x)

]
is the total reward she will receive, and L(x, λ) is the total of profit

plus reward. But the decision-maker can choose only the activity levels xj; the scalars λi — the

dollars per unit of slack the decision-maker will receive as a reward — are chosen by the person

who will provide the reward. And that person wants to choose the values of the λi’s that will make

the total reward as small as possible. The solution of the Lagrangian problem — the saddle-value

— is the combination of x-choices and λ-choices in which each person is optimizing, given the

other person’s choices. The per-unit rewards λi are the marginal values of the resources. And the

complementary slackness condition λ ·
(
b−G(x)

)
= 0 in (KT2) says that the total reward will

actually be zero at the solution.

6



7



8



minmax1.jpg

Figure 8

9


