
Open and Closed Sets

Definition: A subset S of a metric space (X, d) is open if it contains an open ball about each of

its points — i.e., if
∀x ∈ S : ∃ε > 0 : B(x, ε) ⊆ S. (1)

Theorem:

(O1) ∅ and X are open sets.

(O2) If S1, S2, . . . , Sn are open sets, then ∩ni=1Si is an open set.

(O3) Let A be an arbitrary set. If Sα is an open set for each α ∈ A, then ∪α∈ASα is an open set.

In other words, the union of any collection of open sets is open. [Note that A can be any set, not

necessarily, or even typically, a subset of X.]

Proof:

(O1) ∅ is open because the condition (1) is vacuously satisfied: there is no x ∈ ∅. X is open

because any ball is by definition a subset of X.

(O2) Let Si be an open set for i = 1, . . . , n, and let x ∈ ∩ni=1Si. We must find an ε > 0 for

which B(x, ε) ⊆ ∩ni=1Si. For each i there is an εi such that B(x, εi) ⊆ Si, because each Si is open.

Let ε = min{ε1, . . . , εn}. Then 0 < ε 5 εi for each i; therefore B(x, ε) ⊆ B(x, εi) ⊆ Si for each i —

i.e., B(x, ε) ⊆ ∩ni=1Si.

(O3) Let x ∈ ∪α∈ASα; we must find an ε > 0 for which B(x, ε) ⊆ ∪α∈ASα. Since x ∈ ∪α∈ASα,

we have x ∈ Sᾱ for some ᾱ. Since Sᾱ is open, there is an ε > 0 such that B(x, ε) ⊆ Sᾱ ⊆ ∪α∈ASα.

�

Definition: A subset S of a metric space (X, d) is closed if it is the complement of an open set.

Theorem:

(C1) ∅ and X are closed sets.

(C2) If S1, S2, . . . , Sn are closed sets, then ∪ni=1Si is a closed set.

(C3) Let A be an arbitrary set. If Sα is a closed set for each α ∈ A, then ∩α∈ASα is a closed set.

In other words, the intersection of any collection of closed sets is closed.

Proof:

(C1) follows directly from (O1).

(C2) and (C3) follow from (O2) and (O3) by De Morgan’s Laws. �

Exercise: Use De Morgan’s Laws to establish (C2) and (C3).



Definition: A limit point of a set S in a metric space (X, d) is an element x̄ ∈ X for which there

is a sequence in S \{x} that converges to x̄ — i.e., a sequence in S, none of whose terms is x, that

converges to x. Limit points are also called accumulation points of S or cluster points of S.

Remark: x is a limit point of S if and only if every neighborhood of x contains a point in S \{x};
equivalently, if and only if every neighborhood of x contains an infinite number of points in S.

Proof of the above remark is an exercise. To prove that every neighborhood of a limit point x

contains an infinite number of points, you may find it useful to invoke the Well-Ordering Property

of the set N of natural numbers:

Definition: A totally ordered set (X,5) has the Well-Ordering Property (or is a well-ordered set)

if every nonempty subset of X has a first (i.e., smallest) element.

The Well-Ordering Principle: The set N of natural numbers with its usual order is well-ordered.

In the following theorem, limit points provide an important characterization of closed sets. As

always with characterizations, this characterization is an alternative definition of a closed set.

In fact, many people actually use this as the definition of a closed set, and then the definition

we’re using, given above, becomes a theorem that provides a characterization of closed sets as

complements of open sets.

Theorem: A set is closed if and only if it contains all its limit points.

Proof:

(⇒): Let S be a closed set, and let {xn} be a sequence in S (i.e., ∀n ∈ N : xn ∈ S) that

converges to x̄ ∈ X. We must show that x̄ ∈ S. Suppose not — i.e., x̄ ∈ Sc. Since Sc is open,

there is an ε > 0 for which B(x̄, ε) ⊆ Sc. Since {xn} → x̄, let n̄ be such that n > n̄⇒ d(xn, x̄) < ε.

Then for n > n̄ we have both xn ∈ S and xn ∈ B(x̄, ε) ⊆ Sc, a contradiction.

(⇐): Suppose S is not closed. We must show that S does not contain all its limit points. Since

S is not closed, Sc is not open. Therefore there is at least one element x̄ of Sc such that every ball

B(x̄, ε) contains at least one element of (Sc)c = S. For every n ∈ N, let xn ∈ B(x̄, 1
n
) ∩ S. Then

we have a sequence {xn} in S which converges to x̄ 6∈ S — i.e., x̄ is a limit point of S but is not

in S, so S does not contain all its limit points. �

Example 1: For each n ∈ N, let Sn be the open set (− 1
n
, 1
n
) ⊆ R. Then ∩∞n=1Sn = {0}, which

is not open. This is a counterexample which shows that (O2) would not necessarily hold if the

collection weren’t finite.
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Example 2: For each n ∈ N, let Sn be the closed set [ 1
n
, n−1

n
] ⊆ R. Then ∪∞n=1Sn = (0, 1), which

is not closed. This is a counterexample which shows that (C2) would not necessarily hold if the

collection weren’t finite.

Example 3: Rn
++ is open. This can be shown directly, by finding an appropriate ε > 0 for each

x ∈ R. Alternatively, one could show that for each i = 1, . . . , n the set Si = {x ∈ Rn | xi > 0} is

open, and then invoke (O2) for the set Rn
++ = ∩ni=1Si.

Example 4: The union of all open subsets of Rn
+ is an open set, according to (O3). Note that

this set is Rn
++. This is therefore a third way to show that Rn

++ is an open set.

Exercise: Is `∞++ an open subset of `∞? Prove that your answer is correct.

Example 5: Generalizing Example 4, let G be any subset of (X, d) and let G̊ be the union of all

open subsets of G. According to (O3), G̊ is an open set. G̊ is clearly the “largest” open subset of

G, in the sense that (i) G̊ is itself an open subset of G, and (ii) every open subset of G is a subset

of G̊ — i.e.. G̊ contains every open subset of G, which we could state informally as G̊ is “at least

as large” as every other open subset of G. We call the set G̊ the interior of G, also denoted int G.

Example 6: Doing the same thing for closed sets, let G be any subset of (X, d) and let G be

the intersection of all closed sets that contain G. According to (C3), G is a closed set. It is the

“smallest” closed set containing G as a subset, in the sense that (i) G is itself a closed set containing

G, and (ii) every closed set containing G as a subset also contains G as a subset — every other

closed set containing G is “at least as large” as G. We call G the closure of G, also denoted cl G.

The following definition summarizes Examples 5 and 6:

Definition: Let G be a subset of (X, d). The interior of G, denoted int G or G̊, is the union of

all open subsets of G, and the closure of G, denoted cl G or G, is the intersection of all closed

sets that contain G.

Remark: G̊ ⊆ G ⊆ G — i.e., int G ⊆ G ⊆ cl G.

The interior of the complement of G — i.e., int Gc — is called the exterior of G:

Definition: Let G be a subset of (X, d). The exterior of G, denoted ext G, is the interior of Gc.

Remark: The exterior of G is the union of all open sets that do not intersect G — i.e., the largest

open set in Gc.
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The boundary of a set lies “between” its interior and exterior:

Definition: Let G be a subset of (X, d). The boundary of G, denoted bdy G, is the complement

of int G ∪ ext G — i.e., bdy G = [int G ∪ ext G]c.

Remark: The interior, exterior, and boundary of a set comprise a partition of the set. The interior

and exterior are both open, and the boundary is closed. bdy G = cl G ∩ cl Gc.

Example 7: Let u : R2
++ → R be defined by u(x1, x2) = x1x2, and let S = {x ∈ R2

++ |u(x) < ξ}
for some ξ ∈ R++ . Note that S = u−1((−∞, ξ)), the inverse image under u of the open interval

(−∞, ξ) — in fact, S is the inverse image of the open interval (c, ξ) for any c 5 0, and S is also

the lower-contour set of any x such that u(x) = ξ. We will show that S is an open set.

Proof: Let x ∈ S, i.e., x1x2 < ξ. We must find an ε > 0 such that B(x, ε) ⊆ S, i.e., such that

x ∈ B(x, ε)⇒ x1x2 < ξ. (2)

The arithmetic will be easiest if we use the max-norm ‖ · ‖∞, in which case, for whatever value of

ε we choose, we will have

x ∈ B(x, ε) ⇒ [x1 < x̄1 + ε & x2 < x̄2 + ε]

⇒ x1x2 < (x1 + ε) (x2 + ε)

⇔ x1x2 < x1x2 + (x1 + x2)ε+ ε2.

Therefore we will have the desired implication (2) if x1x2 + (x1 + x2)ε + ε2 = ξ. We therefore

solve the equation
ε2 + (x̄1 + x̄2)ε+ (x̄1x̄2 − ξ) = 0

to obtain the ε we want (for the given quantities ξ, x1, and x2). The quadratic formula yields

ε =
1

2

[
−(x̄1 + x̄2) +

√
(x̄1 + x̄2)2 + 4(ξ − x̄1x̄2)

]
> 0,

and we have the desired implication (2). �

Example 7 is an important example — not the specific utility function u(x1, x2) = x1x2, but the

fact that the set S we defined (the inverse image under u of an open set in R) was itself an open

set in the domain of u. In fact, it’s a theorem we’ll do later that a function f : (X, d) → (Y, d ′)

is continuous if and only if f−1(A) is open in X for every open set A ⊆ Y . We’ve also said that

we would define a preorder to be continuous if the strict upper- and lower-contour sets of every

alternative are open sets. These notions of continuity, and their relationship to open sets, have

important implications for utility theory and other applications in economics.
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But suppose we change the example so that u : R2
+ → R — i.e., we’ve changed the domain of u

from R2
++ to R2

+. Now the set u−1((−∞, ξ)) includes the boundary of the set R2
+, i.e., the axes of

R2
+. The inverse image of the set (−∞, ξ) does not appear to be an open set, as it was before. But

the function u(x1, x2) = x1x2 doesn’t seem any less continuous than it was before — and indeed,

when we define continuity, as we’re going to do shortly, we’ll find that u is continuous, even with

the domain R2
+.

The key to this puzzle is in the condition, two paragraphs above, that for every open set A in the

target space Y , the set f−1(A) must be “open in X” — i.e., open in the domain of f . In Example

7, the domain of u is R2
++; in our variation on the example, the domain of u is R2

+. Each of these

sets is a metric space, with the metric it inherits from R2, but they are not the same metric space

as R2. Therefore a set might be open in one of these three metric spaces but not in another.

For example, let x = (0, 2) ∈ R2 and let r = 1, and consider how the open ball B(x, r) changes

as we move from the metric space R2 to the metric space R2
+ to the metric space R2

++. Recall the

definition of the open ball B(x, r):

Definition: Let (X, d) be a metric space, let x ∈ X, and let r be a positive real number. The

open ball about x of radius r is the set B(x, r) := {x ∈ X | d(x, x) < r}.

As the metric space playing the role of the definition’s (X, d) changes from X = R2 to X = R2
+ to

X = R2
++, the set B(x, r) changes from, first, the whole disc about the point (0, 2) of radius r = 1,

to the “half-disc” which is the intersection of the whole disc and R2
+, to a set that’s not defined —

the set is not defined in the third case because x /∈ X. But undefined sets like this did not appear

in our proof in Example 7, because all the ε-balls we used were centered at points x ∈ R2
++.

In order to take a general approach to this issue, let’s suppose we begin with a metric space (X, d),

but then we want to work in a subspace (X ′, d ′), where X ′ is a subset of X and d ′ is the metric

that X ′ inherits from (X, d). For any open ball B(x, r) in X, let B′(x, r) be the corresponding

open ball in X ′ — i.e., B′(x, r) := B(x, r) ∩X ′.

In our example we started with the metric space X = R2 and then we moved to the domain of u,

which was the subspace X ′ = R2
++ ⊆ X. Everything worked OK here because the set X ′ was an

open subset of X, so for any point x ∈ X ′, there is an open ball B(x, r) about x that lies entirely

in X ′ — therefore B′(x, r) = B(x, r). Any subset S ⊆ X ′ is open in the metric space X ′ if and

only if it’s open in the metric space X.

5



But when we moved instead to the subspace X ′ = R2
+ ⊆ X, that set was not an open set in

the original metric space X = R2. Therefore there were sets, like the half-disc B′(x, r) — i.e.,

B(x, r)∩R2
+ — that are open in the metric space X ′ but not open in the original metric space X.

This is a common occurrence. A useful concept to clarify it is the idea that a subset S of a subspace

X ′ of X can be open relative to X ′:

Definition: Let (X, d) be a metric space, let X ′ ⊆ X, and let S ⊆ X ′. The set S is open relative

to X ′ if S is an open set in the metric space X ′, with the metric it inherits from (X, d). We also

say simply that S is open in X ′.

The following remark provides a useful characterization of relatively open sets.

Remark: If S is a subset of X ′ ⊆ X, then S is open relative to X ′ if and only if there is an open

set V in X such that S = V ∩X ′.

Proof:

(⇒): Suppose S is open relative to X ′. Then for every x ∈ S there is an εx > 0 such that

B′(x, εx) ⊆ S. But also B(x, εx) is open in X. Let V = ∪x∈SB(x, εx); then V is open in X and

S = V ∩X ′, as follows:

∪x∈SB′(x, εx) = S

i.e., ∪x∈S [B(x, εx) ∩X ′] = S

i.e., [∪x∈SB(x, εx)] ∩X ′ = S

i.e., V ∩X ′ = S.

(⇐): Suppose V is an open set in X such that S = V ∩ X ′. We must show that S is open

relative to X ′. Let x ∈ S and let ε > 0 be such that B(x, ε) ⊆ V [which we can do because V is

open in X]. Then also B′(x, ε) ⊆ V , and of course B′(x, ε) ⊆ X ′. Therefore B′(x, ε) ⊆ V ∩X ′ —

i.e., B′(x, ε) ⊆ S. Since we chose x ∈ S arbitrarily, this establishes that S is open relative to X ′.

�

Of course, we can do exactly the same thing for closed sets:

Definition: Let (X, d) be a metric space, let X ′ ⊆ X, and let S ⊆ X ′. The set S is closed

relative to X ′ if S is a closed set in the metric space X ′, with the metric it inherits from (X, d).

We also say simply that S is closed in X ′.

And we have the parallel characterization of relatively closed sets:
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Remark: If S is a subset of X ′ ⊆ X, then S is closed relative to X ′ if and only if there is a closed

set G in X such that S = G ∩X ′.
Proof: Exercise.

Let’s return to Example 7, but let’s define u on the domain R2
+ — i.e., u : R2

+ → R instead of

u : R2
++ → R. Although the lower-contour set S = {x ∈ R2

+ |u(x) < ξ} is not an open set in R2

(that’s the issue that’s led us to the notion of relatively open sets), S is open in R2
+, the domain of

u — i.e., S is open relative to the domain of u — because S is the intersection of R2
+ (the domain

of u) and the set {x ∈ R2 |u(x) < ξ}, which is open in R2. So this is consistent after all with the

function u and the associated preference preorder % being continuous on the consumption set R2
+.
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