
Quadratic Forms

Recall the Simon & Blume excerpt from an earlier lecture which said that the main task of calculus is

to approximate nonlinear functions with linear functions. It’s actually more accurate to say that we

approximate nonlinear functions with affine functions: given a nonlinear function f : Rn → R, our

approximating function will be of the form b+ g(∆x), where g is a linear function and ∆x = x−x.

For example, in the case n = 1, if we wish to approximate f near a point x in the domain of f ,

our approximating function is f(x) + a∆x, where the coefficient a is f ′(x), the derivative of f at

x: f(x) plays the role of b in the expression b + g(∆x) above, and the linear function a∆x — i.e.,

f ′(x)∆x — plays the role of g(∆x). In words, the affine approximation of f near x is the affine

function with (i) the same value as f at x, and (ii) the same slope (the same derivative) as f at x.

We’re going to find that it’s important to approximate nonlinear functions not only with linear

(actually, affine) functions, but also with quadratic functions. For example, for a real function

f : R → R, our quadratic approximating function will be f(x) + f ′(x)∆x + 1
2f

′′(x)(∆x)2. The

quadratic approximation is therefore the quadratic function that has (i) the same value as f at x,

(ii) the same slope (the same derivative) as f at x, and (iii) the same curvature (the same second

derivative) as f at x.

When we generalize from functions with the one-dimensional domain R to multivariate functions,

with domain Rn, things get a little bit more complicated. The derivative of a function f : Rn → R
at a point x ∈ Rn is no longer just a number, but a vector in Rn — specifically, the gradient of f

at x, which we write as ∇f(x). And the quadratic term in the quadratic approximation to f is a

quadratic form, which is defined by an n × n matrix H(x) — the second derivative of f at x. In

these notes we’re going to study quadratic forms.

Quadratic Forms

You already know that a quadratic function (from R into R) is a 2nd-degree polynomial, i.e., a real

function f(x) = ax2 + bx + c in which a 6= 0. If each of the coefficients a, b, and c is non-zero, then

the function has a second-degree (quadratic) term, a first-degree (linear) term, and a zero-degree

(constant) term. However, a quadratic form is a real-valued function on Rn that has only second-

degree (quadratic) terms. So a quadratic form on R (i.e., on Rn, where n = 1) is a function of the

form f(x) = ax2 for some non-zero coefficient a ∈ R.

What about the case n = 2? A quadratic form on R2 is a function of the form f(x1, x2) =

a11x1x1 +a12x1x2 +a21x2x1 +a22x2x2, or equivalently, f(x1, x2) = a11x
2
1 + (a12 +a21)x1x2 +a22x

2
2.

Note that in the second expression for f we combined the coefficients a12 and a21 into their sum, so

we can also write the same function as f(x1, x2) = a11x
2
1 + a′12x1x2 + a22x

2
2, where a′12 = a12 + a21,

which is a common way to write quadratic forms (but without the prime). But for now we’re going

to use the first expression, writing the generic quadratic form on R2 as

f(x1, x2) = a11x1x1 + a12x1x2 + a21x2x1 + a22x2x2.



Note that the generic quadratic form on R2 can also be written as

f(x1, x2) = [x1 x2]

[
a11 a12

a21 a22

][
x1

x2

]
.

Moreover, without loss of generality we can assume that a12 = a21 — for if a12 and a21 are not

equal, we can write them instead as ã12 and ã21 and then define a12 = a21 = 1
2(ã12+ ã21). Therefore

the quadratic forms on R2 are precisely the functions f : R2 → R of the form

f(x) = f(x1, x2) = [x1 x2]

[
a11 a12

a21 a22

][
x1

x2

]
= xAx,

where A is a symmetric matrix.

Note: As in the expression xAx above, I’m not going to indicate transposes of vectors in

these Quadratic Forms notes. The expression xAx will always mean that the vector x ∈ Rn

is written as a row vector if it’s on the left of the matrix and as a column vector if it’s on

the right, so that xAx is always well-defined and its value is always a real number.

Before moving to the general case of Rn, let’s consider the case of R3. In this case the generic

quadratic form is

f(x1, x2, x3) = a11x1x1 + a22x2x2 + a33x3x3

+a12x1x2 + a21x2x1 + a13x1x3 + a31x3x1 + a23x2x3 + a32x3x2,

and we can assume, as before, that a12 = a21, a13 = a31, and a23 = a32. Therefore we can write the

quadratic form as

f(x) = f(x1, x2, x3) = [x1 x2 x3]

a11 a12 a13

a21 a22 a23

a31 a32 a33


x1x2
x3

 = xAx,

where A is a symmetric 3× 3 matrix.

Now it should be clear how we want to define the general quadratic form, on Rn:

Definition: A quadratic form on Rn is a function f : Rn → R of the form f(x) = xAx, where A

is a symmetric n× n matrix.

One important property of quadratic forms is immediately obvious:

Remark: The value of a quadratic form at the vector 0 ∈ Rn is zero.

Because every quadratic form corresponds to a unique symmetric matrix, we can characterize various

classes of quadratic forms completely in terms of properties of symmetric matrices. For example,

how can we identify which quadratic forms always have nonnegative values for every vector x ∈ Rn?

How can we identify which ones are strictly concave functions? We answer questions like these

by identifying the properties of symmetric matrices that yield quadratic forms with the desired

properties.
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Definiteness of Quadratic Forms and Matrices

We ended the preceding section by asking how we can identify which quadratic forms on Rn always

have nonnegative values, or which ones are strictly concave functions, etc. The pattern for general n

is foreshadowed by the simple case n = 1, where the quadratic forms are the functions f(x) = ax2.

If a > 0 this quadratic form is positive for all nonzero values of x, and if a < 0 the quadratic form is

negative for all nonzero values of x. Moreover, in the a > 0 case the function f(·) is strictly convex,

and when a < 0 the function is strictly concave.

Before trying to analyze the general case of quadratic forms on Rn for any n, let’s spend some time

studying the case n = 2. Here the quadratic form is

f(x) = f(x1, x2) = [x1 x2]

[
a11 a12

a21 a22

][
x1

x2

]
= xAx,

where A is a symmetric matrix. Let’s rewrite the matrix as

[
a b

b c

]
so we won’t have to deal with

the subscripts. So we have

f(x) = xAx = [x1 x2]

[
a b

b c

][
x1

x2

]
= ax21 + 2bx1x2 + cx22. (1)

What we want to know about this quadratic form is whether its value is positive (or at least non-

negative) for all vectors x 6= 0; or whether it’s negative (or at least non-positive) for all x 6= 0;

or whether neither of these is true — i.e., it’s positive for some vectors and negative for others.

If the first (“positive”) statement is true, we say the quadratic form is positive definite; if all

we can say is that it’s non-negative for all nonzero vectors, we say the quadratic form is positive

semi-definite. If the quadratic form is negative for all x 6= 0, we say it’s negative definite; and

if we can only say it’s non-positive for all nonzero vectors, we say it’s negative semi-definite. If

the sign can go either way, we say the quadratic form is indefinite. We use the same terms —

positive definite, etc. — to describe the matrix A.

Now let’s see if we can figure out some conditions on the matrix A that will tell us which definiteness

property it has — and therefore which property the quadratic form xAx has. Certainly if a = c = 0

then the quadratic form in (1) is indefinite: x1x2 > 0 for some vectors x, and x1x2 < 0 for other

vectors x. In fact, if just one of the coefficients a or c is zero, the quadratic form is indefinite: for

example, if a = 0 then xAx = 2bx1x2 + cx22 = (2bx1 + cx2)x2, so the sign of xAx depends on the

sign of 2bx1 + cx2, which will clearly be positive for some vectors x and negative for others.

So let’s assume that both a 6= 0 and c 6= 0. Now we can use the trick of “completing the square” to

change this expression into a sum of two squares, as follows:

3



xAx = ax21 + 2bx1x2 + cx22

= a
(
x21 + 2

b

a
x1x2

)
+ cx22 +

b2

a
x22 −

b2

a
x22

= a
(
x21 + 2

b

a
x1x2 +

b2

a2
x22
)

+
(
c− b2

a

)
x22

= a
(
x1 +

b

a
x2
)2

+
1

a
(ac− b2)x22

= a
(
x1 +

b

a
x2
)2

+
1

a
|A|x22.

Now it’s clear that if a > 0 and |A| > 0, then xAx is positive definite: these two inequalities ensure

that the only way both terms in the sum can be zero is if x2 = 0 (to make the second term zero),

in which case x1 has to be zero as well in order to make the first term zero. Of course, a > 0

and |A| > 0 also guarantee that xAx can’t be negative for any vector x, so xAx is indeed positive

definite. A parallel argument shows that xAx is negative definite if a < 0 and |A| > 0: in this case

the coefficient on the second term is negative if and only if a and |A| have opposite signs.

Notice that although we assumed that a and c are both nonzero, we didn’t actually use the fact

that c 6= 0. However, one of the conditions for definiteness (positive or negative) is that |A| > 0,

and this requires that ac > 0 — i.e., that a and c have the same sign. Also note that we could have

carried out the above argument with the roles of a and c reversed. Therefore, we have the following

theorem, where we revert to the notation aij for the entries in the matrix A:

Theorem: A 2× 2 symmetric matrix A is

• positive definite if and only if |A| > 0 and either a11 > 0 or a22 > 0,

which is equivalent to |A| > 0 and both a11 > 0 and a22 > 0;

• negative definite if and only if |A| > 0 and either a11 < 0 or a22 < 0,

which is equivalent to |A| > 0 and both a11 < 0 and a22 < 0.

What are necessary and sufficient conditions for the matrix A and the associated quadratic form

xAx to be positive or negative semidefinite? If A is positive semidefinite — i.e., xAx = 0 for all

x 6= 0 — we clearly must have a = 0 and c = 0. If either a > 0 or c > 0, then we must have |A| = 0;

and if a = c = 0, then we must have b = 0 as well, in which case |A| = 0. Therefore the conditions

a = 0, c = 0, and |A| = 0 together must all hold if A is positive semidefinite. Are these conditions

also sufficient? Suppose that |A| = 0. If a = c = 0, then |A| = 0 implies that b = 0, so that A

is the zero matrix, and xAx = 0 for all x ∈ R2. And it’s clear in the above expression for xAx

that if a > 0 (or, symmetrically, c > 0) and also |A| = 0, then xAx = 0 for all x 6= 0. Therefore

the conditions a = 0, c = 0, and |A| = 0 are sufficient as well as necessary for A to be positive

semidefinite. A parallel argument provides the conditions for A to be negative semidefinite, and we

have the following theorem:

Theorem: A 2× 2 symmetric matrix A is

• positive semidefinite if and only if a11 = 0, a22 = 0, and |A| = 0;

• negative semidefinite if and only if a11 5 0, a22 5 0, and |A| = 0.
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This pattern generalizes to Rn for arbitrary n as follows: first think of the components aij of the 2×2

matrix A as 1× 1 “submatrices” of A; because they’re 1× 1 we’ll call them “order-1” submatrices,

and we’ll say that A itself, which is 2 × 2, is an order-2 submatrix. For an n × n matrix A we’ll

say that a submatrix of order k consists of k of the rows and k of the columns of A — or we could

equivalently say that an order-k submatrix is formed by deleting n−k rows and columns. Now note

that in the 2× 2 example, the conditions we developed involved only submatrices on the diagonal,

a11 and a22, as well as A. We could say each of these submatrices was formed by deleting the same

row and column: for a11 we deleted the second row and the second column; for a22 we deleted the

first row and column; for A itself we deleted no rows and columns. Finally, note that the conditions

in the 2×2 case were conditions on the signs of the determinants of these submatrices. The following

definition generalizes these ideas to n× n matrices.

Definition: Let A be an n×n matrix. For each k = 1, 2, . . . , n an order-k principal submatrix

of A is a k×k matrix formed by deleting the same n−k rows and columns. The order-k submatrices

formed by deleting the last n− k rows and columns are called the leading principal submatrices of

A. The determinant of a submatrix of A is called a minor of A.

Therefore the leading principal submatrices of a 2 × 2 matrix A are the matrices a11 and A itself;

the leading principal minors are a11 and |A|. The leading principal minors of a 3× 3 matrix A are

a11 and

∣∣∣∣∣a11 a12

a21 a22

∣∣∣∣∣ and |A|.

The leading principal minors of a 4× 4 matrix A are

a11 and

∣∣∣∣∣a11 a12

a21 a22

∣∣∣∣∣ and

∣∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣∣ and |A|.

The general versions of our 2× 2 theorems are as follows:

Theorem: An n× n symmetric matrix is

• positive definite if and only if all of its leading principal minors are positive,

or equivalently, if and only if all of its principal minors are positive;

• negative definite if and only if all of its order-k leading principal minors have sign (−1)k;

or equivalently, if and only if all of its order-k leading principal minors have sign (−1)k.

Theorem: An n× n symmetric matrix is

• positive semidefinite if and only if all of its principal minors are non-negative;

• negative semidefinite if and only if all of its nonzero order-k principal minors have sign (−1)k.

Corollary: An n× n symmetric matrix is indefinite if and only if it has both a negative principal

minor and an order-k principal minor with sign (−1)k+1. (Note that these could both be the same

principal minor, as in the following example.)
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Example: In order that the matrix A be positive definite it’s necessary and sufficient that the

leading principal minors all be positive. It therefore seems natural to think that the parallel result

should hold for positive semidefiniteness: that A is positive semidefinite if and only if all of its

leading principal minors are nonnegative. Here’s a counterexample, which shows that merely having

nonnegative leading principal minors is not sufficient to ensure that A is positive semidefinite: we

need to consider all the principal minors.

Let A =

1 0 2

0 0 0

2 0 2

. All three leading principal minors are either positive or zero:

|A1| = a11 = 1, |A2| =

∣∣∣∣∣1 0

0 0

∣∣∣∣∣ = 0, and |A3| = |A| = 0.

However, the order-2 non-leading principal minor∣∣∣∣∣a11 a13

a31 a33

∣∣∣∣∣ =

∣∣∣∣∣1 2

2 2

∣∣∣∣∣ = −2,

which is inconsistent with both positive and negative semidefiniteness: it’s negative, which is in-

consistent with positive semidefiniteness; and its order is k = 2 and its sign is −1 6= (−1)k, which is

inconsistent with negative semidefiniteness. Note that xAx = x21 +2x23 +4x1x3. When x = (1, 0, 1),

then xAx = 7; when x = (1, 0,−1), then xAx = −1; this verifies directly, without having to con-

sider principal minors, that A is neither negative semidefinite nor positive semidefinite — i.e., that

it’s indefinite.
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